Test : Différence entre versions
Ligne 300 : | Ligne 300 : | ||
Il est donc nécessaire de mettre en œuvre des moyens efficaces permettant de réduire ces rejets ainsi que leurs impacts. Dans un premier temps il est utile de définir quelques éléments de stratégie. Nous présenterons ensuite les différents moyens pratiques utilisables, en distinguant les actions curatives reposant sur des stratégies de traitement et les actions préventives reposant sur la diminution des volumes d'eau ou de polluants mobilisés pendant les périodes pluvieuses. | Il est donc nécessaire de mettre en œuvre des moyens efficaces permettant de réduire ces rejets ainsi que leurs impacts. Dans un premier temps il est utile de définir quelques éléments de stratégie. Nous présenterons ensuite les différents moyens pratiques utilisables, en distinguant les actions curatives reposant sur des stratégies de traitement et les actions préventives reposant sur la diminution des volumes d'eau ou de polluants mobilisés pendant les périodes pluvieuses. | ||
+ | |||
+ | ==Éléments de stratégie== | ||
+ | |||
+ | ===Raisonner maîtrise et pas uniquement traitement=== | ||
+ | |||
+ | Les actions possibles pour réduire les rejets et leurs impacts sont nombreuses et le traitement (au sens de dépollution) n’est qu’une piste parmi d’autres et pas nécessairement la plus efficace à long terme. Des actions très différentes peuvent être utilisées, reposant par exemple sur les idées suivantes : | ||
+ | * réduire les volumes et les débits d’eau produits ; | ||
+ | * réduire les quantités de polluants mobilisables par temps de pluie ; | ||
+ | * améliorer la stratégie de rejet de façon à diminuer les impacts ; | ||
+ | * etc.. | ||
+ | |||
+ | ===Prendre en compte l'ensemble des rejets=== | ||
+ | |||
+ | Pendant les événements pluvieux, la ville continue de produire des eaux usées. C'est donc l'ensemble des flux (eaux usées et eaux de ruissellement) qu'il faut prendre en compte. Une partie de ces flux transite par la station d'épuration, une partie subit éventuellement des traitements spécifiques et une partie est rejetée sans aucun traitement. Diminuer la masse totale de polluants rejetée implique de prendre en considération chacun de ces éléments et de diminuer leur somme. Il n'est pas forcément efficace, par exemple, de diminuer la masse de polluants rejetée par les déversoirs d'orage d'un réseau unitaire, si l'on augmente dans le même temps la masse de polluants rejetée par la station d'épuration. | ||
+ | |||
+ | ===Prendre en compte la durée totale pendant laquelle l'événement pluvieux modifie le fonctionnement du système d’assainissement=== | ||
+ | |||
+ | La durée totale à considérer lorsque l’on cherche à définir une stratégie de réduction des RUTP doit être significativement plus longue que celle des événements pluvieux générateurs. Il est en effet nécessaire de prendre en compte la totalité de la période qui va du début de la précipitation pluvieuse jusqu’au moment où le système d’assainissement retrouve un fonctionnement nominal de temps sec. Les raisons de cette nécessité sont les suivantes : | ||
+ | * les écoulements peuvent être notablement augmentés pendant plusieurs heures, voire plusieurs jours après une pluie (vidange d’ouvrages de stockage, présence d’eaux parasites d’infiltration, etc.) ; | ||
+ | * la composition des rejets peut être différente et modifier le fonctionnement de la station d’épuration (du fait de l’arrachement du biofilm présent dans le réseau par exemple) ; | ||
+ | * la station d'épuration elle-même peut avoir été perturbée par l’augmentation des débits (par exemple déstabilisation de la chaine de nitrification/dénitrification) et avoir besoin de temps pour récupérer ses capacités nominales. | ||
+ | |||
+ | ===Minimiser les impacts et non seulement les rejets et adapter la stratégie aux objectifs sur le milieu=== | ||
+ | |||
+ | Selon la nature du milieu aquatique et ses usages, il n'est pas nécessairement utile de le protéger de manière uniforme contre les mêmes événements. Au-toto des obligations réglementaires qui doivent bien évidemment être satisfaites (l’[https://www.legifrance.gouv.fr/loda/id/LEGITEXT000031088680/ arrêté du 21 juillet 2015] impose un nombre maximum de rejets par an ou un pourcentage maximum des flux d’eau ou de polluants rejetés), il convient de déterminer les types d'impact contre lesquels on veut se prémunir. On se réfère par exemple souvent aux trois familles de critères suivants : | ||
+ | * les masses de polluants rejetées sur de longues périodes (au moins une année pour intégrer la variabilité saisonnière) qui déterminent les [[Effet cumulatif (HU)|effets cumulatifs]] ; cette famille de critères pourra être prise en compte par exemple dans le cas de milieux sensibles à l’[[Eutrophisation (HU)|eutrophisation]] ou à des [[Ecotoxicité (HU)|effets écotoxiques]] ; | ||
+ | * les masses de polluants rejetées à l’occasion des événements les plus chargés, et/ou lorsque le milieu aquatique est le plus vulnérable (débit faible, température de l'eau élevée) qui sont responsables des [[Effet de choc (HU)|effets de choc immédiats]] ; des critères de ce type seront à considérer si le milieu aquatique est par exemple sensible aux [[Choc anoxique (HU)|chocs anoxiques]] ; | ||
+ | * la fréquence des rejets, éventuellement pour une saison particulière ; cette famille de critères sera la plus significative dans le cas d'[[Effet chronique (HU)|effets chroniques]] ou d'effets de [[Stress (effet de) (HU)|stress]] et/ou de la gêne pour certains usages, en provoquant par exemple des interdictions de baignade en été. | ||
+ | |||
+ | Selon le type d'impact considéré comme prioritaire, mais également selon la sensibilité du milieu ou la nature des rejets, le ou les polluants les plus perturbants ne seront également pas les mêmes, ce qui peut également conditionner la stratégie à mettre en œuvre. | ||
+ | |||
+ | ===Prendre en compte la complexité réelle des phénomènes=== | ||
+ | |||
+ | Les impacts des rejets dans un milieu aquatique sont régis par un grand nombre de paramètres et les approches trop simples sont souvent insuffisantes. Par exemple les rejets sont répartis dans l'espace et peuvent se succéder dans le temps. Comme les impacts de ces rejets ont une durée potentiellement importante ces impacts peuvent donc se cumuler à la fois dans le temps et dans l'espace. Seule une simulation en continue intégrant à la fois les rejets et les réactions du milieu récepteur peut alors permettre de comprendre leur dynamique et de définir une stratégie efficace. Cette situation est illustrée par la figure 1 qui présente un exemple sur la Seine. | ||
+ | |||
+ | |||
+ | [[File:impacts_rejets_seine1.JPG|600px|center|thumb|<center>''<u>Figure 1</u> : Simulation de l’impact d’une pluie sur la qualité de la Seine à Triel sur Seine ; la courbe marron est la simulation d’origine ; l'analyse des concentrations en NH<sub>4</sub> a permis de déterminer l'origine des différentes contributions et de recomposer le signal à partir des différentes sources ; la courbe reconstituée est très proche de la courbe totale ; il est à noter que la durée de l'impact d'un seul rejet est dans ce cas supérieur à 10 jours ; <u>Source</u> : SIAAP.''</center>]] | ||
+ | |||
+ | ==Actions curatives reposant sur le traitement des RUTP== | ||
+ | |||
+ | ===Utilisation optimum des stations d'épuration === | ||
+ | |||
+ | L'équipement de la France en stations d'épuration est en 2020 très correct (BIPE, 2015). De plus une grande majorité des systèmes d'assainissement est, au moins en partie, de type unitaire. Essayer de tirer le meilleur parti de cet équipement est donc la première piste qui a été envisagée. Pour ceci deux ensemble de moyens peuvent être exploitées : | ||
+ | * amener le maximum de flux jusqu'à la station d'épuration ; | ||
+ | * optimiser sa capacité épuratoire pendant les périodes pluvieuses. | ||
+ | |||
+ | ====Amener le maximum de flux polluants à la station d'épuration==== | ||
+ | |||
+ | Les stations d'épuration sont généralement conçues pour accepter des débits plusieurs fois supérieurs au débit moyen de temps sec. Elles disposent donc d'une réserve de traitement qui leur permet théoriquement de traiter une partie plus ou moins importante des volumes produits pendant les périodes pluvieuses. Pour optimiser l'utilisation de cette surcapacité il est possible d'agir sur plusieurs paramètres. | ||
+ | |||
+ | =====Optimiser le réglage des seuils des déversoirs d'orage===== | ||
+ | |||
+ | Il s'agit d'éviter que certains déversoirs d'orage ne rejettent avant que la capacité de la station ne soit atteinte. Simple dans son principe, cette action n'est cependant pas toujours facile à réaliser pour les raisons suivantes. | ||
+ | * Le niveau des seuils peut être imposé par le [[Débit capable (HU)|débit capable]] de certains tronçons et remonter le niveau d'un seuil peut conduire à une augmentation du risque d'inondation en aval ou à des remontées des eaux en amont (inondation des sous-sols par exemple). | ||
+ | * Selon la position du déversoir dans le système d'assainissement ce ne sont pas nécessairement les mêmes événements pluvieux qui vont provoquer des déversements ; par exemple les déversoirs les plus en amont seront particulièrement sensibles à des pluies très courtes et très intenses qui ne généreront pas nécessairement de débits importants plus en aval. | ||
+ | * Un système d'assainissement constitue un système complexe et toute action sur un déversoir particulier aura des conséquences sur les déversoirs situés en aval ; remonter le seuil d'un déversoir particulier peut donc conduire à augmenter le volume rejeté par un autre déversoir. Une somme d'améliorations locales est donc insuffisante et il est nécessaire d'avoir une vision globale du fonctionnement du système d'assainissement. Or ce fonctionnement évolue au cours du temps et dépend des caractéristiques des précipitations. Un réglage particulier des débits de déversement peut ainsi être parfaitement adapté pour une pluie donnée et s’avérer totalement inadapté pour une autre. | ||
+ | |||
+ | <u>Nota</u> : Il est important de bien comprendre qu'amener le maximum d’effluents le plus loin possible vers l'aval ne constitue pas obligatoirement une optimisation du fonctionnement. Outre le fait qu'elle peut conduire à des consommations importantes d'énergie lorsque des pompages sont nécessaires, elle est la cause de rejets très importants par certains déversoirs (en particulier par celui qui est situé à l'entrée de la station). Ces rejets sont susceptibles d'être plus dommageables pour le milieu aquatique que des déversements répartis en plusieurs points le long du réseau et du milieu récepteur. | ||
+ | |||
+ | =====Stocker provisoirement l'eau dans le réseau===== | ||
+ | |||
+ | La deuxième solution possible consiste à stocker provisoirement l'eau excédentaire pendant l’événement pluvieux, et à la restituer ultérieurement à un débit régulé compatible avec la capacité de la station. Le stockage dans le système d'assainissement peut être effectué soit dans des ouvrages spécifiques ([[Bassin d'orage (HU)|bassins d'orage)]], soit dans le réseau lui-même. Cette solution est efficace mais nécessite une bonne maîtrise de la gestion du transport solide pour éviter des dépôts trop importants dans le réseau. | ||
+ | |||
+ | =====Gérer les flux en temps réel===== | ||
+ | |||
+ | L'utilisation de systèmes adaptatifs fonctionnant soit en fonction des caractéristiques prévues de la pluie, soit en temps réel (déversoirs automatisés par exemple), constitue une piste intéressante. Le principe consiste à adapter en permanence les capacités de transport et de traitement de façon à optimiser le fonctionnement global du système. Ce fonctionnement dynamique est obtenu en utilisant des ouvrages de régulation qui peuvent être pilotés par un agent humain ou par un automate (on parle alors de gestion automatique). Ce type de solution suppose que l’on dispose de possibilités alternatives de fonctionnement (par exemple mobilisation d’une capacité de stockage supplémentaire ou possibilité de transfert des flux vers une autre branche du réseau). Voir [[Gestion en temps réel des systèmes d'assainissement (HU)]]. | ||
+ | |||
+ | En augmentant les flux apportés à la station d’épuration, on réduit mécaniquement ceux qui sont rejetés sans traitement par les déversoirs d’orage. Cette solution est donc potentiellement efficace, mais nécessite cependant d‘être utilisée avec précaution. En effet diminuer la masse de polluants rejetée par les déversoirs d’orage n’implique pas nécessairement que la masse totale de polluants rejetée soit diminuée. Pour ceci il est nécessaire que la station d'épuration soit en mesure de traiter de façon efficace les flux qu'elle reçoit pendant les périodes pluvieuses. | ||
+ | |||
+ | ====Utiliser au mieux la station d'épuration pendant la période de temps de pluie==== | ||
+ | |||
+ | Par temps de pluie, les débits et les volumes d’effluents à traiter par la station d'épuration augmentent de façon sensible. De plus ces effluents ont une composition différente de celle des eaux usées de temps sec. Les différences sont variables selon les polluants concernés (augmentation des concentrations en MES, relative stabilité ou baisse des concentrations en DCO et DBO<sub>5</sub>, forte diminution des concentrations en azote et phosphore, changement des ratios C/N/P). Il ne s’agit donc pas d’une simple dilution. Ces modifications sont susceptibles d'avoir des conséquences sur le fonctionnement des stations d’épuration, notamment sur celui des stations à boues activées en culture libre qui sont les plus nombreuses en France : | ||
+ | * des pics de concentration en MES dans l’eau traitée ; | ||
+ | * une légère baisse de rendement du traitement de la pollution carbonée ; | ||
+ | * une baisse parfois forte, voire un arrêt, de la nitrification (lorsqu'elle est mise en place) ; | ||
+ | * un stockage des boues dans le clarificateur et, éventuellement, une fuite de ces boues vers le milieu aquatique ; | ||
+ | * des perturbations plus ou moins graves de la filière boues. | ||
+ | |||
+ | Pour éviter (ou du moins limiter au maximum) ces perturbations et assurer un bon rendement d'épuration pendant les périodes pluvieuses, plusieurs précautions doivent être prises, en particulier (Duchêne et Canler, 1995) : | ||
+ | * anticiper l'arrivée de l'événement de façon à optimiser la capacité de traitement ; | ||
+ | * adapter les dispositifs de prétraitement aux spécificités des RUTP ; | ||
+ | * améliorer la décantation primaire par adjonction de réactifs, afin d'optimiser l'interception de la fraction particulaire des polluants des RUTP ; | ||
+ | * adapter les traitements biologiques secondaires (selon les filières). | ||
+ | |||
+ | Il est à noter que si la concentration en entrée (voir le débit massique) diminue en entrée, le rendement peut être altéré mais cette situation n'est pas grave à la condition que le flux rejeté reste acceptable par le milieu. De façon pragmatique la meilleure solution pour éliminer le maximum de flux consiste à exploiter la STEP dans la gamme de débit où elle offre les meilleures qualité au rejet. Aussi l’un des points d’attention est de pouvoir stocker (voir point précédent) pour se donner la possibilité d'exploiter la STEP dans sa tranche de débit la plus performante. | ||
+ | |||
+ | Une piste plus radicale consiste à augmenter la capacité de traitement primaire et à créer une filière spécifique au temps de pluie. Cependant cette filière spécifique peut être également mise en œuvre dans un autre cadre que la station d'épuration comme nous allons le voir dans le paragraphe suivant. | ||
+ | |||
+ | ===Ouvrages spécifiques de traitement=== | ||
+ | |||
+ | Le principe de base d'un traitement spécifique des RUTP a été posé depuis plus de 30 ans (Chebbo, 1992). Il repose sur le fait que, dans ces effluents, de nombreux polluants (mais pas tous, voir [[Pollution des rejets urbains de temps de pluie (HU)]]) sont fixés sur des particules solides, en grande majorité fines (quelques dizaines de micromètres), mais qui sont relativement bien décantables. | ||
+ | |||
+ | Deux types principaux d’ouvrages de traitement utilisant la décantation ont ainsi été testés : | ||
+ | * les ouvrages de stockage-décantation extensifs : les effluents sont admis dans l’ouvrage, restent stockés un temps suffisant pour qu’une partie importante des matières en suspension se déposent, puis sont vidangés en évitant la remise en suspension des solides décantés ; | ||
+ | * les ouvrages de décantation au fil de l’eau, sans stockage. | ||
+ | |||
+ | ====Ouvrages de stockage-décantation extensifs==== | ||
+ | |||
+ | Les eaux polluées sont stockés temporairement dans un [[Bassin de retenue (HU)|bassin de retenue]] conçu pour favoriser la décantation des matières en suspension (en particulier en évitant les [[Court-circuit (HU)|courts-circuits hydrauliques]]). Les effluents décantés sont le plus souvent rejetés directement au milieu naturel. Dans certains cas les eaux les plus chargées, et éventuellement les sédiments décantés, peuvent, pour leur part, être remis en mouvement après la pluie pour être envoyés vers la station d'épuration. | ||
+ | |||
+ | Les rendements peuvent atteindre 60 à 90 % pour les polluants présents en phase particulaire, pour des temps de séjour de 2 à 4 heures, à condition que la géométrie et l’hydrodynamique des ouvrages soient bien appropriées (Jansons ''et al.'', 2005 ; Jansons & Law, 2007 ; Persson & Wittgren, 2003). | ||
+ | |||
+ | <u>Nota</u> : Les dimensionnements ne portant que sur les volumes et surfaces des ouvrages de décantation sans tenir compte de l'hydrodynamique des écoulements ([[Hazen (méthode de) (HU)|Méthode de Hazen]] par exemple) sont totalement inefficaces. Ils peuvent conduire à des rendements de décantation extrêmement médiocres car ils ne permettent pas de tenir compte de la présence éventuelle de courts-circuits hydrauliques ou de la remise en suspension des particules décantées au moment de la vidange. | ||
+ | |||
+ | Du fait des temps de séjour nécessaires, le volume de ces ouvrages doit être important si on veut contrôler le volume rejeté par les événements pluvieux les plus forts : de 25 à plus de 100 m<sup>3</sup>/ha actif selon les objectifs visés (Ruscassier ''et al.'', 1998). | ||
+ | |||
+ | Des volumes plus faibles, même si le phénomène de [[Effet de premier flot (HU)|premier flot]] est rarement exploitable, peuvent cependant être efficaces pour diminuer la masse annuelle rejetée et, dans une moindre mesure, la fréquence des déversements. En effet, la majeure partie des pluies générant du ruissellement sont des pluies faibles ou moyennes pour lesquelles les volumes produits pourront être totalement interceptés par des ouvrages de capacité plus réduite. | ||
+ | |||
+ | Pour réduire la taille des ouvrages, un fonctionnement au fil de l'eau est également envisageable. Il nécessite une conception hydraulique encore plus rigoureuse de l'ouvrage pour limiter les écoulements préférentiels. Le rendement des ouvrages au fil de l'eau est cependant plus faible. | ||
+ | |||
+ | <u>Nota</u> : Les bassins de stockage-décantation extensifs fonctionnent d'une façon totalement différente des bassins d'orage. Les bassins d'orage doivent être le plus autocurants possible pour transférer directement les flux polluants vers la station alors que les bassins de stockage-décantation doivent l'être le moins possible pour favoriser la décantation. | ||
+ | |||
+ | |||
Version du 22 novembre 2021 à 16:08
Paragraphe masqué par defaut
test2 masqué aaaaaaaaaaaaaa bbbbbbbbbbbbbbbbbbbb
Lorem | ipsum |
dolor | sit |
Paragraphe non masqué par defaut
blabla non masqué
Lorem | ipsum |
dolor | sit |
Expression du modèle simplifié (Texte original de Jean-Michel Tanguy)
A partir des hypothèses précédentes, considérons un canal infini de forme rectangulaire et avec pente constante : largeur $ b $, pente du fond $ p_f $ et profondeur d'eau $ H $.
Fichier:Marée progressive2.gif
Test de l'extension CategoryTree
test publication test publi2
Test de Latex
test2 $ f(y)= \int_a^b \frac{sin(x)}{x}^2 * \sqrt{x+y} $
Théorie de Ritter
Cette théorie suppose un effacement immédiat du barrage dans un canal de section constante, sans pente et sans frottement. Elle prend appui sur la théorie des caractéristiques, remarquablement formulée par Courant et Friedrichs [4], elle consiste à partir des équations de SaintVenant 1D:
$ \begin{cases} \dfrac{ \partial u }{ \partial t }+u\dfrac{ \partial u }{ \partial x }+g\dfrac{ \partial \eta }{ \partial x }=0 \\\\ \dfrac{ \partial \eta }{ \partial t }+\dfrac{ \partial (h+\eta)}{ \partial x }=0 \end{cases} $
En opérant le changement de variable $ c=\sqrt{g(h+\eta) } $, nous obtenons:
$ \begin{cases} \dfrac{ \partial u }{ \partial t }+u\dfrac{ \partial u }{ \partial x }+2c\dfrac{ \partial c }{ \partial x }=0 \\\\ \dfrac{ 2\partial c }{ \partial t }+2u\dfrac{ \partial c}{ \partial x }+c \dfrac{ \partial u}{ \partial x }=0 \end{cases} $
En faisant respectivement la somme et la différence de ces 2 équations, nous obtenons:
$ \begin{cases} \left [ \dfrac{ \partial }{ \partial t }+(u+c)\dfrac{ \partial }{ \partial x } \right](u+2c)=0 \\\\ \left [ \dfrac{ \partial }{ \partial t }+(u-c)\dfrac{ \partial }{ \partial x } \right](u-2c)=0 \end{cases} $
Ces 2 relations représentent les équations de deux courbes caractéristiques $ C^+ $ et $ C^- $, de pentes respectives:
$ \begin{cases} \dfrac{ dx }{ dt }=u+2c \\\\ \dfrac{ dx }{ dt }=u-2c \end{cases} $
Tracé du diagramme des caractéristiques
Nous avons vu précédemment que les caractéristiques $ C^- $ sont des droites faciles à tracer.
Par contre, les caractéristiques $ C^+ $ ne sont pas des droites et leur tracé peut être réalisé de proche en proche de la manière suivante :
- nous partons du pied de la caractéristique en prenant un point sur l'axe des x en amont : $ P_0 (x_{p0}, t_{p0}=0) $
- nous passons au point $ P_1 (x_{p1}, t_{p1}) $ le long de $ C^+ $ qui vient couper $ C^- $, qui correspond à une hauteur d'eau relative $ h_{p1}=1 $
- Ce point appartient donc d'une part à la caractéristique $ C^- $ et on peut donc écrire : $ x_{p1}=-c_0t_{p1} $
- Par ailleurs, $ P_1 $ appartient également à la caractéristique $ C^+ $ issue de $ P_0 $, ce qui nous permet d'écrire:
- $ \dfrac{dx} {dt} =u+c_0=c_0 $ (puisque la vitesse est nulle en amont du réservoir au repos), d'où :
- $ x_{p1}=x_{p0}+c_0t_{p1} $
- On en déduit les coordonnées de $ P_1 : x_{p1}=x_{p0}/2 $ et $ t_{p1}=-x_{p0}/(2 c_0) $
- en suivant $ C^+ $ nous partons alors de $ P_1 $ pour atteindre $ P_2 $ qui se trouve sur une autre caractéristique $ C^- $ correspondant à une autre hauteur d'eau inférieure, par exemple $ h_{p1}=0.9 $ si on choisit un pas de discrétisation $ dh=0.1 m $.
- De la même manière que précédemment, nous écrivons les 2 conditions d'appartenance de $ P_2 $ à 2 caractéristiques:
- $ P_2 $ appartient à $ C^+ $ : $ \dfrac{dx} {dt} =u+c=c_0 $ soit $ \dfrac{x_{p2}-x_{p1}} {t_{p2}-t_{p1}} =u_{p2}+c_{p2}=c_0 $
- le long de cette caractéristique, la quantité $ u+2c $ se conserve (invariant de Rieman), d'où : $ u_{p2}+2c_{p2} =u_0+2c_0 $
- $ P_2 $ appartient à $ C^- $ : $ \dfrac{dx} {dt} =-3c_{p2}+2c_0+u0 $
De l'ensemble de ces relations, nous en déduisons les coordonnées de $ P_2 $
$ t_{p2}= x_{p1}-t_{p1}(-c_{p2}+2c_0+u_0 )/(-2c_{p2}) $
$ x_{p2}=(-3c_{p2}+2c_0+u_0)t_{p2} $
L'avancée progressive de cet algorithme en prenant ici comme pas de discrétisation pour les caractéristiques $ C^+ (en bleu) : dx=50 m $ et pour les caractéristiques $ C^- (en rouge) : dh=0.1 $ nous permet de tracer le diagramme des caractéristiques:
Test Pdf
Media:METHODES GEOPHYSIQUES_CHAP_1_2_3_4.pdf Media:METHODES GEOPHYSIQUES_CHAP_5_6_7_8.pdf Media:TECHNIQUE DES PETITS BARRAGES_CHAP_1_2_3.pdf Media:TECHNIQUE DES PETITS BARRAGES_CHAP_4_5_6_7.pdf
Test du gif animé
Test de l'extension WikiCategoryTagCloud
Test de l'extension Anywebsite
Test de l'extension ToFeed (rss) couplé avec Anywebsite
Test de l'extension Imagemap
Seul la région "Bretagne" est cliquable, j'ai allégé le code pour cette page de test
Test de wgRawHtml (utilisation du langage HTML
La fonction "html" fonctionne
Test de l'extension Cite
According to scientists, the Sun is pretty big.[1] The Moon, however, is not so big.[2]
Notes
- ↑ E. Miller, The Sun, (New York: Academic Press, 2005), 23-5.
- ↑ R. Smith, "Size of the Moon", Scientific American, 46 (April 1978): 44-6.
Test de l'extension SyntaxHighlight_GeSHi
//boucle en temps for t=0:0.05:1 i=i+1 if i<>1 then yprec=y; end y=a*cos(k*x-sigma*t) if option==2 then y=y+a*cos(-k*x-sigma*t); end // agitation if i==1 then yprec=y; end xfpolys([x';LONG;0],[yprec';-1;-1],[id1]) plot(x',yprec',"w") xfpolys([x';LONG;0],[y';-1;-1],[id2]) deltay=max(y,yprec) num=string(t) xpause(1000); title(titre+num+' sec', 'position',[0.5 0.5],'fontsize',3) plot2d(x',y') // dessin des vecteurs vitesse select option case -1 then [fx2, fy2]=vitesse(k,h,agksursigma,t,xvect,yvect,sigma) case 1 then [fx1, fy1]=vitesse(k,h,agksursigma,t,xvect,yvect,sigma) else [fx1, fy1]=vitesse(k,h,agksursigma,t,xvect,yvect,sigma) [fx2, fy2]=vitesse(-k,h,-agksursigma,t,xvect,yvect,sigma) end fx=fx1+fx2;fy=fy1+fy2 b=get("current_axes"); b.data_bounds=[0,-1;10,0.6]; b.auto_scale="off" champ(xvect',yvect',fx,fy,arfact=1) //GIF export xs2gif(0,'houle3_'+string(i)+'.gif'); // longueur des vecteurs vitesse lv=sqrt(fx.*fx+fy.*fy) //delete() end
Extension Geoportail
Extension Widget
Pour PDF
Pour les cartes
autres extensions
Test VML
test
Test page HU
Traduction anglaise : toto of storm water discharges
Dernière mise à jour : 01/06/2021
Cet article traite de l’ensemble des moyens qu’il est possible de mettre en œuvre pour mieux maîtriser les rejets urbains de temps de pluie ou RUTP.
Les rejets urbains de temps de pluie sont constitués des eaux usées et des eaux de ruissellement que les villes rejettent, soit de façon séparée (système séparatif), soit sous la forme d'un mélange (système unitaire) pendant les périodes pluvieuses.
Les concentrations en polluants dans ces rejets peuvent être importantes (voir Pollution des rejets urbains de temps de pluie (HU)) et les rejets urbains de temps de pluie contribuent notablement à la dégradation des milieux aquatiques récepteurs (voir Impact (des rejets urbains sur les milieux aquatiques) (HU)).
Il est donc nécessaire de mettre en œuvre des moyens efficaces permettant de réduire ces rejets ainsi que leurs impacts. Dans un premier temps il est utile de définir quelques éléments de stratégie. Nous présenterons ensuite les différents moyens pratiques utilisables, en distinguant les actions curatives reposant sur des stratégies de traitement et les actions préventives reposant sur la diminution des volumes d'eau ou de polluants mobilisés pendant les périodes pluvieuses.
Éléments de stratégie
Raisonner maîtrise et pas uniquement traitement
Les actions possibles pour réduire les rejets et leurs impacts sont nombreuses et le traitement (au sens de dépollution) n’est qu’une piste parmi d’autres et pas nécessairement la plus efficace à long terme. Des actions très différentes peuvent être utilisées, reposant par exemple sur les idées suivantes :
- réduire les volumes et les débits d’eau produits ;
- réduire les quantités de polluants mobilisables par temps de pluie ;
- améliorer la stratégie de rejet de façon à diminuer les impacts ;
- etc..
Prendre en compte l'ensemble des rejets
Pendant les événements pluvieux, la ville continue de produire des eaux usées. C'est donc l'ensemble des flux (eaux usées et eaux de ruissellement) qu'il faut prendre en compte. Une partie de ces flux transite par la station d'épuration, une partie subit éventuellement des traitements spécifiques et une partie est rejetée sans aucun traitement. Diminuer la masse totale de polluants rejetée implique de prendre en considération chacun de ces éléments et de diminuer leur somme. Il n'est pas forcément efficace, par exemple, de diminuer la masse de polluants rejetée par les déversoirs d'orage d'un réseau unitaire, si l'on augmente dans le même temps la masse de polluants rejetée par la station d'épuration.
Prendre en compte la durée totale pendant laquelle l'événement pluvieux modifie le fonctionnement du système d’assainissement
La durée totale à considérer lorsque l’on cherche à définir une stratégie de réduction des RUTP doit être significativement plus longue que celle des événements pluvieux générateurs. Il est en effet nécessaire de prendre en compte la totalité de la période qui va du début de la précipitation pluvieuse jusqu’au moment où le système d’assainissement retrouve un fonctionnement nominal de temps sec. Les raisons de cette nécessité sont les suivantes :
- les écoulements peuvent être notablement augmentés pendant plusieurs heures, voire plusieurs jours après une pluie (vidange d’ouvrages de stockage, présence d’eaux parasites d’infiltration, etc.) ;
- la composition des rejets peut être différente et modifier le fonctionnement de la station d’épuration (du fait de l’arrachement du biofilm présent dans le réseau par exemple) ;
- la station d'épuration elle-même peut avoir été perturbée par l’augmentation des débits (par exemple déstabilisation de la chaine de nitrification/dénitrification) et avoir besoin de temps pour récupérer ses capacités nominales.
Minimiser les impacts et non seulement les rejets et adapter la stratégie aux objectifs sur le milieu
Selon la nature du milieu aquatique et ses usages, il n'est pas nécessairement utile de le protéger de manière uniforme contre les mêmes événements. Au-toto des obligations réglementaires qui doivent bien évidemment être satisfaites (l’arrêté du 21 juillet 2015 impose un nombre maximum de rejets par an ou un pourcentage maximum des flux d’eau ou de polluants rejetés), il convient de déterminer les types d'impact contre lesquels on veut se prémunir. On se réfère par exemple souvent aux trois familles de critères suivants :
- les masses de polluants rejetées sur de longues périodes (au moins une année pour intégrer la variabilité saisonnière) qui déterminent les effets cumulatifs ; cette famille de critères pourra être prise en compte par exemple dans le cas de milieux sensibles à l’eutrophisation ou à des effets écotoxiques ;
- les masses de polluants rejetées à l’occasion des événements les plus chargés, et/ou lorsque le milieu aquatique est le plus vulnérable (débit faible, température de l'eau élevée) qui sont responsables des effets de choc immédiats ; des critères de ce type seront à considérer si le milieu aquatique est par exemple sensible aux chocs anoxiques ;
- la fréquence des rejets, éventuellement pour une saison particulière ; cette famille de critères sera la plus significative dans le cas d'effets chroniques ou d'effets de stress et/ou de la gêne pour certains usages, en provoquant par exemple des interdictions de baignade en été.
Selon le type d'impact considéré comme prioritaire, mais également selon la sensibilité du milieu ou la nature des rejets, le ou les polluants les plus perturbants ne seront également pas les mêmes, ce qui peut également conditionner la stratégie à mettre en œuvre.
Prendre en compte la complexité réelle des phénomènes
Les impacts des rejets dans un milieu aquatique sont régis par un grand nombre de paramètres et les approches trop simples sont souvent insuffisantes. Par exemple les rejets sont répartis dans l'espace et peuvent se succéder dans le temps. Comme les impacts de ces rejets ont une durée potentiellement importante ces impacts peuvent donc se cumuler à la fois dans le temps et dans l'espace. Seule une simulation en continue intégrant à la fois les rejets et les réactions du milieu récepteur peut alors permettre de comprendre leur dynamique et de définir une stratégie efficace. Cette situation est illustrée par la figure 1 qui présente un exemple sur la Seine.
Actions curatives reposant sur le traitement des RUTP
Utilisation optimum des stations d'épuration
L'équipement de la France en stations d'épuration est en 2020 très correct (BIPE, 2015). De plus une grande majorité des systèmes d'assainissement est, au moins en partie, de type unitaire. Essayer de tirer le meilleur parti de cet équipement est donc la première piste qui a été envisagée. Pour ceci deux ensemble de moyens peuvent être exploitées :
- amener le maximum de flux jusqu'à la station d'épuration ;
- optimiser sa capacité épuratoire pendant les périodes pluvieuses.
Amener le maximum de flux polluants à la station d'épuration
Les stations d'épuration sont généralement conçues pour accepter des débits plusieurs fois supérieurs au débit moyen de temps sec. Elles disposent donc d'une réserve de traitement qui leur permet théoriquement de traiter une partie plus ou moins importante des volumes produits pendant les périodes pluvieuses. Pour optimiser l'utilisation de cette surcapacité il est possible d'agir sur plusieurs paramètres.
Optimiser le réglage des seuils des déversoirs d'orage
Il s'agit d'éviter que certains déversoirs d'orage ne rejettent avant que la capacité de la station ne soit atteinte. Simple dans son principe, cette action n'est cependant pas toujours facile à réaliser pour les raisons suivantes.
- Le niveau des seuils peut être imposé par le débit capable de certains tronçons et remonter le niveau d'un seuil peut conduire à une augmentation du risque d'inondation en aval ou à des remontées des eaux en amont (inondation des sous-sols par exemple).
- Selon la position du déversoir dans le système d'assainissement ce ne sont pas nécessairement les mêmes événements pluvieux qui vont provoquer des déversements ; par exemple les déversoirs les plus en amont seront particulièrement sensibles à des pluies très courtes et très intenses qui ne généreront pas nécessairement de débits importants plus en aval.
- Un système d'assainissement constitue un système complexe et toute action sur un déversoir particulier aura des conséquences sur les déversoirs situés en aval ; remonter le seuil d'un déversoir particulier peut donc conduire à augmenter le volume rejeté par un autre déversoir. Une somme d'améliorations locales est donc insuffisante et il est nécessaire d'avoir une vision globale du fonctionnement du système d'assainissement. Or ce fonctionnement évolue au cours du temps et dépend des caractéristiques des précipitations. Un réglage particulier des débits de déversement peut ainsi être parfaitement adapté pour une pluie donnée et s’avérer totalement inadapté pour une autre.
Nota : Il est important de bien comprendre qu'amener le maximum d’effluents le plus loin possible vers l'aval ne constitue pas obligatoirement une optimisation du fonctionnement. Outre le fait qu'elle peut conduire à des consommations importantes d'énergie lorsque des pompages sont nécessaires, elle est la cause de rejets très importants par certains déversoirs (en particulier par celui qui est situé à l'entrée de la station). Ces rejets sont susceptibles d'être plus dommageables pour le milieu aquatique que des déversements répartis en plusieurs points le long du réseau et du milieu récepteur.
Stocker provisoirement l'eau dans le réseau
La deuxième solution possible consiste à stocker provisoirement l'eau excédentaire pendant l’événement pluvieux, et à la restituer ultérieurement à un débit régulé compatible avec la capacité de la station. Le stockage dans le système d'assainissement peut être effectué soit dans des ouvrages spécifiques (bassins d'orage), soit dans le réseau lui-même. Cette solution est efficace mais nécessite une bonne maîtrise de la gestion du transport solide pour éviter des dépôts trop importants dans le réseau.
Gérer les flux en temps réel
L'utilisation de systèmes adaptatifs fonctionnant soit en fonction des caractéristiques prévues de la pluie, soit en temps réel (déversoirs automatisés par exemple), constitue une piste intéressante. Le principe consiste à adapter en permanence les capacités de transport et de traitement de façon à optimiser le fonctionnement global du système. Ce fonctionnement dynamique est obtenu en utilisant des ouvrages de régulation qui peuvent être pilotés par un agent humain ou par un automate (on parle alors de gestion automatique). Ce type de solution suppose que l’on dispose de possibilités alternatives de fonctionnement (par exemple mobilisation d’une capacité de stockage supplémentaire ou possibilité de transfert des flux vers une autre branche du réseau). Voir Gestion en temps réel des systèmes d'assainissement (HU).
En augmentant les flux apportés à la station d’épuration, on réduit mécaniquement ceux qui sont rejetés sans traitement par les déversoirs d’orage. Cette solution est donc potentiellement efficace, mais nécessite cependant d‘être utilisée avec précaution. En effet diminuer la masse de polluants rejetée par les déversoirs d’orage n’implique pas nécessairement que la masse totale de polluants rejetée soit diminuée. Pour ceci il est nécessaire que la station d'épuration soit en mesure de traiter de façon efficace les flux qu'elle reçoit pendant les périodes pluvieuses.
Utiliser au mieux la station d'épuration pendant la période de temps de pluie
Par temps de pluie, les débits et les volumes d’effluents à traiter par la station d'épuration augmentent de façon sensible. De plus ces effluents ont une composition différente de celle des eaux usées de temps sec. Les différences sont variables selon les polluants concernés (augmentation des concentrations en MES, relative stabilité ou baisse des concentrations en DCO et DBO5, forte diminution des concentrations en azote et phosphore, changement des ratios C/N/P). Il ne s’agit donc pas d’une simple dilution. Ces modifications sont susceptibles d'avoir des conséquences sur le fonctionnement des stations d’épuration, notamment sur celui des stations à boues activées en culture libre qui sont les plus nombreuses en France :
- des pics de concentration en MES dans l’eau traitée ;
- une légère baisse de rendement du traitement de la pollution carbonée ;
- une baisse parfois forte, voire un arrêt, de la nitrification (lorsqu'elle est mise en place) ;
- un stockage des boues dans le clarificateur et, éventuellement, une fuite de ces boues vers le milieu aquatique ;
- des perturbations plus ou moins graves de la filière boues.
Pour éviter (ou du moins limiter au maximum) ces perturbations et assurer un bon rendement d'épuration pendant les périodes pluvieuses, plusieurs précautions doivent être prises, en particulier (Duchêne et Canler, 1995) :
- anticiper l'arrivée de l'événement de façon à optimiser la capacité de traitement ;
- adapter les dispositifs de prétraitement aux spécificités des RUTP ;
- améliorer la décantation primaire par adjonction de réactifs, afin d'optimiser l'interception de la fraction particulaire des polluants des RUTP ;
- adapter les traitements biologiques secondaires (selon les filières).
Il est à noter que si la concentration en entrée (voir le débit massique) diminue en entrée, le rendement peut être altéré mais cette situation n'est pas grave à la condition que le flux rejeté reste acceptable par le milieu. De façon pragmatique la meilleure solution pour éliminer le maximum de flux consiste à exploiter la STEP dans la gamme de débit où elle offre les meilleures qualité au rejet. Aussi l’un des points d’attention est de pouvoir stocker (voir point précédent) pour se donner la possibilité d'exploiter la STEP dans sa tranche de débit la plus performante.
Une piste plus radicale consiste à augmenter la capacité de traitement primaire et à créer une filière spécifique au temps de pluie. Cependant cette filière spécifique peut être également mise en œuvre dans un autre cadre que la station d'épuration comme nous allons le voir dans le paragraphe suivant.
Ouvrages spécifiques de traitement
Le principe de base d'un traitement spécifique des RUTP a été posé depuis plus de 30 ans (Chebbo, 1992). Il repose sur le fait que, dans ces effluents, de nombreux polluants (mais pas tous, voir Pollution des rejets urbains de temps de pluie (HU)) sont fixés sur des particules solides, en grande majorité fines (quelques dizaines de micromètres), mais qui sont relativement bien décantables.
Deux types principaux d’ouvrages de traitement utilisant la décantation ont ainsi été testés :
- les ouvrages de stockage-décantation extensifs : les effluents sont admis dans l’ouvrage, restent stockés un temps suffisant pour qu’une partie importante des matières en suspension se déposent, puis sont vidangés en évitant la remise en suspension des solides décantés ;
- les ouvrages de décantation au fil de l’eau, sans stockage.
Ouvrages de stockage-décantation extensifs
Les eaux polluées sont stockés temporairement dans un bassin de retenue conçu pour favoriser la décantation des matières en suspension (en particulier en évitant les courts-circuits hydrauliques). Les effluents décantés sont le plus souvent rejetés directement au milieu naturel. Dans certains cas les eaux les plus chargées, et éventuellement les sédiments décantés, peuvent, pour leur part, être remis en mouvement après la pluie pour être envoyés vers la station d'épuration.
Les rendements peuvent atteindre 60 à 90 % pour les polluants présents en phase particulaire, pour des temps de séjour de 2 à 4 heures, à condition que la géométrie et l’hydrodynamique des ouvrages soient bien appropriées (Jansons et al., 2005 ; Jansons & Law, 2007 ; Persson & Wittgren, 2003).
Nota : Les dimensionnements ne portant que sur les volumes et surfaces des ouvrages de décantation sans tenir compte de l'hydrodynamique des écoulements (Méthode de Hazen par exemple) sont totalement inefficaces. Ils peuvent conduire à des rendements de décantation extrêmement médiocres car ils ne permettent pas de tenir compte de la présence éventuelle de courts-circuits hydrauliques ou de la remise en suspension des particules décantées au moment de la vidange.
Du fait des temps de séjour nécessaires, le volume de ces ouvrages doit être important si on veut contrôler le volume rejeté par les événements pluvieux les plus forts : de 25 à plus de 100 m3/ha actif selon les objectifs visés (Ruscassier et al., 1998).
Des volumes plus faibles, même si le phénomène de premier flot est rarement exploitable, peuvent cependant être efficaces pour diminuer la masse annuelle rejetée et, dans une moindre mesure, la fréquence des déversements. En effet, la majeure partie des pluies générant du ruissellement sont des pluies faibles ou moyennes pour lesquelles les volumes produits pourront être totalement interceptés par des ouvrages de capacité plus réduite.
Pour réduire la taille des ouvrages, un fonctionnement au fil de l'eau est également envisageable. Il nécessite une conception hydraulique encore plus rigoureuse de l'ouvrage pour limiter les écoulements préférentiels. Le rendement des ouvrages au fil de l'eau est cependant plus faible.
Nota : Les bassins de stockage-décantation extensifs fonctionnent d'une façon totalement différente des bassins d'orage. Les bassins d'orage doivent être le plus autocurants possible pour transférer directement les flux polluants vers la station alors que les bassins de stockage-décantation doivent l'être le moins possible pour favoriser la décantation.
Test de signature
Note : d'autres personnes peuvent avoir contribué au contenu de cet article, [Consultez l'historique]. |